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We study the effect of noisy oscillatory input on the signal discrimination by spontaneously firing neurons.
Using analytically tractable model, we contrast signal detection in two situations: �i� when the neuron is driven
by coherent oscillations and �ii� when the coherence of oscillations is destroyed. Analytical calculations re-
vealed a region in the parameter space of the model where oscillations act to reduce the variability of neuronal
firing and to enhance the discriminability of weak signals. These analytical results are employed to unveil a
possible role of coherent oscillations in peripheral electrosensory system of paddlefish in improvement of
detection of weak stimuli. The proposed mechanism may be relevant to a wide range of phenomena involving
coherently driven oscillators.
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I. INTRODUCTION

Rhythmic activity is observed at all levels of nervous sys-
tems �1�. Recently, neuronal oscillations have been shown to
improve the stimulus discrimination, either by increasing the
precision of spike timing �2� or by inducing binomial statis-
tics of serially binned spike counts across a neuronal popu-
lation �3�. Here, we explore a different mechanism of dis-
crimination enhancement, whereby coherent stochastic
oscillations driving a periodically spiking neuron induce
long-lasting serial correlations of interspike intervals �ISIs�
that suppress variability of spike counts. This situation is
encountered, for example, by a central nervous system neu-
ron receiving coherent oscillatory inputs in gamma band, or
in “hair cell–afferent” sensory receptors for hearing, balance,
and electrosense.

The significance of anticorrelated ISIs in shaping neu-
ronal responses was experimentally demonstrated in elec-
troreceptors of a weakly electric fish �4,5� where negative
correlations of sequential ISIs originate from intrinsic prop-
erties of sensory neurons. Theoretical studies have shown
that a negative feedback mechanism either in a network �6�
or in a single neuron with a dynamic threshold �7,8� can
induce anticorrelations of sequential ISIs, which reduce
long-time variability and thereby lead to enhanced informa-
tion transfer of low-frequency stimuli. In this scenario,
the correlation structure is fixed by the negative feedback
parameters.

The long-lasting ISI anticorrelations can also result from
the interaction of unidirectionally coupled noisy oscillators,
as was shown in peripheral electroreceptors of paddlefish �9�.
In this system, noisy oscillations in sensory epithelia drive
sensory neurons and act as an internal narrow-band noise
that leads to reduced low-frequency fluctuations of neuronal
firing �10,11�. The structure and extent of serial ISI correla-
tions in this feed-forward scenario are set by the frequency
and coherence of driving oscillations. This could potentially
provide an active adjustment mechanism to achieve en-
hanced discrimination on behaviorally relevant time scales.

The structure of ISI correlations in the neuron driven by
slow exponentially correlated noise was also explored by
several analytical studies using integrate and fire models
�12–14�. It was found that exponentially correlated noise
leads to positive serial ISI correlations, which enhance vari-
ability of neuronal firing at long time scales. The Fano factor,
a measure of spike-count variability on different time scales,
shows a minimum, indicating an optimal time scale at which
variability of spike counts is lowest and hence the detection
of weak signals is optimal �12�.

Here, we aim to analyze how the signal detection depends
on the correlation structure, as well as to contrast the signal
detection by a spiking neuron driven by either coherent sto-
chastic oscillations or by fluctuations whose coherence is
destroyed. In both latter cases, the neuron firing is con-
strained to have identical first-order ISI statistics, but it lacks
any ISI correlations if the oscillation coherence is destroyed.
Using an analytically tractable model we calculate the pa-
rameter region where coherent stochastic oscillations en-
hance signal detection. The analytical model predictions are
then verified using the experimental data from paddlefish
electroreceptors �9�.

II. METHODS AND MODEL

A. Spike-count variability and discriminability

To assess the performance of a spontaneously firing neu-
ron as a detector for weak signals s, we apply the ideal
observer paradigm �15� to the neuron’s output spike train
y�t�=�i��t− ti�, where �ti� is the sequence of spike times.
The observable is the spike count n�T�=�t

t+Ty�t��dt� in a
parameter-fixed time window T. Decision about the presence
of a constant signal s is made on the basis of comparing
spike count distributions Ps�n ,T� and P0�n ,T� in two situa-
tions: when a neuron is stimulated or spontaneously firing,
respectively. The separation of the two distributions is char-
acterized by the discriminability measure
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d� = 2���s�T� − �0�T���/��s�T� + �0�T�� , �1�

where � and � are the mean and the standard deviation of
the spike count, respectively. The variability of the spike
count is assessed by the Fano factor �15�,

F�T� = �2�T�/��T� . �2�

We assume that for a weak stimuli, ��T� is not affected by
the signal, and the Fano factor Eq. �2� and the discriminabil-
ity Eq. �1� are related as

d� = �	�0�T�/F0�T� , �3�

where � is the relative change in the mean firing rate due to
stimulus �7�. Equation �3� establishes the relation between
spontaneous spike-count variability and discriminability of
weak signals: smaller Fano factor, i.e., smaller variability of
the spike count of spontaneous firing, results in larger dis-
criminability. The dependence of the discriminability d� on
the signal strength � is linear with the slope 	�0�T� /F0�T�.

Variability of the spike count depends on the correlation
structure of the spike train. The correlations can be quanti-
fied by the serial correlation coefficients �k= �
IiIi+k�
− 
I�2� /var�I� between interspike intervals, Ii= ti− ti−1.
The asymptotic value of the Fano factor F�T� is determined,
if the serial correlation coefficients �SCCs� are summed
over all lags: limT→� F�T�=CV2�1+2�k=1

� �k�, where CV
=	var�I� / 
I� is the coefficient of variation �16�. On interme-
diate time scales, the variability of the spike count depends
crucially on the correlation structure, with positive ISI cor-
relations acting to increase, while negative ISI correlations
acting to suppress spike-count variability �7,17�. In the case
of renewal spiking, when sequential ISIs are uncorrelated,
�k=�0,k, the Fano factor approaches CV2 for large T.

B. Model

A previous study �10� showed that long-lasting serial cor-
relations are a generic result of a unidirectional coupling of
two noisy oscillators. Here we aim to study how the signal
detection performance of a neuron depends on the temporal
structure of ISI correlations and to contrast the signal detec-
tion by a neuron with long-lasting serial ISI correlations ver-
sus a neuron lacking serial ISI correlations, when both neu-
rons have identical first-order ISIs statistics. We employ two
analytically tractable models, which we refer to as renewal
and nonrenewal. These models differ in the coherence of
driving noise, but otherwise have identical ISI distributions
and linear-response properties. In both models, periodic spik-
ing is mimicked by a perfect integrate-and-fire �PIF� model
as in Refs. �12,13�. It is driven by two statistically indepen-
dent Gaussian noises: a narrow-band noise y�t�, representing
coherent stochastic oscillations, and an exponentially corre-
lated noise 	�t�, mimicking slow fluctuations �12�:

ẋ = 
 + y + 	 ,

ẏ = z, ż = − �z − �0
2y + A�0

	2�
1�t� ,

	̇ = − 	/�c + �	
	2/�c
2�t� . �4�

The first equation for x in Eq. �4� is the perfect integrator.
Whenever x�t� reaches the threshold xb=1, a spike is gener-
ated and x immediately resets to the initial value xr=0. The
parameter 
 sets the mean firing rate of the model, fa=
. A
constant stimulus is modeled as a change in the parameter 
.
The two equations for y and z model narrow-band noise with
the peak spectrum frequency fe= �1 /2��	�0

2−�2 /4 and the
variance A2. The coherence of the narrow-band noise is mea-
sured by the quality factor Q=2�fe /�. Finally, the last equa-
tion describes the Ornstein-Uhlenbeck �OU� noise 	�t� with
the correlation time �c and the variance �	

2 . The OU noise is
slow relative to the average period of spiking, �c�1 /
, and
is introduced to account for slow fluctuations observed in
sensory neurons �7�. The terms 
1,2�t� are statistically inde-
pendent Gaussian white noise sources with unit intensity.

For convenience, we introduce a vector r�t�
= �y�t� ,z�t� ,	�t�� for the three-dimensional Gaussian process
driving the perfect integrator. In the nonrenewal model, the
noise vector r�t� evolves independently of spiking dynamics
according to Eq. �4�. In the renewal model, all components
of the noise vector are reset at every spiking to a new value
r0= �y0 ,z0 ,	0� randomly sampled from the noise upon firing
distribution P�r0�. This is the stationary distribution of r
values at the instants of firing in the nonrenewal model. In
both models, the values of noise variables at the beginning of
each ISI are drawn from the same distribution. Consequently,
the ISI densities are identical for both models. However, the
renewal model exhibits no ISI correlations, since the noise
values at the beginning of each ISI are sampled from the
distribution P�r0� at random, i.e., independently of the dura-
tion of the previous ISI and of the noise value at the instants
of firing.

Figure 1 shows numerical simulations of the models. Al-
though the firing patterns �Fig. 1�a�� of both renewal and
nonrenewal models look very similar and the ISI densities
are identical �Fig. 1�b��, their SCCs �Fig. 1�d�� are signifi-
cantly different. This difference appears because the coher-
ence of narrow-band noise y�t� is destroyed in the renewal
model as demonstrated in Fig. 1�c�, where the power spectra
of driving noise y�t� in both models are depicted.

C. Analytical calculation of the Fano factor

Our goal is to contrast the discriminability in the renewal
and nonrenewal models �Eq. �4�� and to analyze the discrim-
inability in the nonrenewal model as a function of the coher-
ence and frequency of the driving oscillations. To this end,
we calculate analytically the Fano factor of the spike trains.
Since the dependence of the discriminability d� on the signal
strength � is linear �Eq. �3��, the relative performance of the
renewal and nonrenewal models can be characterized by the
ratio R�T� of their discriminability slopes:

R�T� =	�n�T�
Fn�T�

	Fr�T�
�r�T�

. �5�

The values of R�T��1 indicate that the signal detection per-
formance is better in the nonrenewal than in the renewal
model.
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Calculations of statistical properties of the spike train are
largely simplified if N consecutive ISIs are replaced by a
passage from xr to sequentially xb ,2xb , . . . ,kxb. . . and Nxb
�13�. Since the right-hand sides of Eq. �4� do not explicitly
depend on x, this is possible if recrossing of a threshold is
highly improbable, i.e., if the noise intensity is small relative
to the drift term 
:

A2 + �	
2 � 
2/2. �6�

Assume, we start our observation at time t=0, when the
value of the voltage variable is x0. The voltage value x0+x at
time T is determined by the transition probability density
Px�x0+x ,T �x0 ,0�= Px�x ,T �0,0� for the x variable:

Px�x,T�0,0� =
 drdr0P�x,r,T�0,r0,0�Pst�r0� . �7�

Here P�x ,r ,T �x0 ,r0 , t0� is the transition probability density
for the multidimensional Gaussian process given by Eq. �4�
without reset and Pst�r0� is the stationary probability density
of the noise variables. These probability densities are readily
obtained analytically �18�.

The number of spike counts NT within the time window T
is equal to the number of “thresholds” nxb contained within
the interval �x0 ,x0+x�; see Fig. 2. For nxb�x� �n+1�xb, it
holds

NT = �n + 1 with probability
x − nxb

xb
,

n with probability
�n + 1�xb − x

xb
,� �8�

since the initial position x0 is uniformly distributed along the
x axis.

According to Eq. �8�, the mean of the spike count 
Nnx�
for a fixed value of x� �nxb , �n+1�xb� is calculated as


Nnx� = �n + 1�
x − nxb

xb
+ n

�n + 1�xb − x

xb
= x/xb. �9�

Analogously, the mean square of the spike count 
Nnx
2 � for a

fixed value of x� �nxb , �n+1�xb� equals


Nnx
2 � = �2n + 1�

x

xb
− n�n + 1� .

To obtain the mean �o�T� and the variance �o
2�T� of the

spike count, we average 
Nnx� and 
Nnx
2 � over all values of x:

�o�T� = �
n=0

� 

nxb

�n+1�xb


Nnx�Px�x,T�0,0�dx ,

�o
2�T� = �

n=0

� 

nxb

�n+1�xb


Nnx
2 �Px�x,T�0,0�dx − �o

2�T� . �10�

This leads to the following expressions for the mean and the
variance of the spike count:

�o�T� =
1

xb



0

�

xPx�x,T�0,0�dx ,

�o
2�T� = �

k=0

� �2k + 1

xb



kxb

�k+1�xb

xPx�x,T�0,0�dx − k�k

+ 1�

kxb

�k+1�xb

Px�x,T�0,0�dx� − �o
2�T� . �11�

The integrals in Eq. �11� are evaluated analytically and the
infinite sum is approximated numerically.

For the renewal model, the mean of the spike count equals
�r�T�=T
 and its variance is expressed as �15�

�r
2�T� = T
 + 2T


0

T �1 −
�

T
��+���d� , �12�

where �+���=����−
���� with ���� being the autocorrelation
function of the renewal spike train �19�:

�+��� =



2�



−�

�

e−i��
1 − �Ŵ����2

�1 − Ŵ����2
d� − 
���� . �13�

Here, Ŵ���= 
ei�I� is the Fourier transform of the ISI density
W�I�. For weak noise, when recrossing of the threshold is
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FIG. 1. Numerical simulation of model equations �4�. �a�: time
series of the “voltage” variable x �upper trace� and noise y�t� �lower
trace� for the nonrenewal �a1� and renewal �a2� models. �b�: prob-
ability density of ISIs, W�I� for renewal �solid line� and nonrenewal
�open circles� models. �c�: power spectral densities �PSD� of noise
y�t� in renewal �gray line� and nonrenewal �black line� models. �d�:
SCCs of spike trains produced by renewal �gray line� and nonre-
newal �black line with circles� models. The parameters are 

=2, A2=0.2, fe / fa=0.4, Q=20.0, �c=375, �	=0.5�10−4,
fe / fa=0.43. Time axes are in units of mean interspike intervals. The
frequency axis in panel �c� is scaled by the mean firing rate fa=2.
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FIG. 2. �Color online� Illustration of the calculation of the Fano
factor.
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very improbable, the ISI density can be approximated by the
Rice density of level crossings �13,20,21�:

W�I� =
 drdr0�
 + y + 	�P�xb,r,I�xr,r0,0�P�r0� . �14�

Here P�r0� is related to the stationary density Pst�r0� of the
Gaussian noise via P�r0�= ��
+y0+	0� /
�Pst�r0� �16�. The
integrals in Eq. �14� extend over the phase space region
where ẋ=�+	+y�0. For weak noise intensities �see Eq.
�6��, it holds that �
+y0+	0� /
�1 everywhere in the phase
space, where Pst�r0� is significantly different from zero.
Therefore, without loss of accuracy, we approximate the
noise upon firing density P�r0� in Eq. �14� by the stationary
density Pst�r0� and extend the integration limits to the whole
phase space. The integrals in Eq. �14� are then evaluated
analytically and then the Fano factor is calculated numeri-
cally using Eqs. �12� and �13� and the fast Fourier transform.

III. RESULTS AND DISCUSSION

The dependence of the Fano factor and SCCs on the co-
herence of oscillations is illustrated in Figs. 3�a�–3�d� for the
nonrenewal �solid red lines� and renewal �dotted blue lines�
models. The theoretical Fano curves perfectly overlap with
the results of numerical simulations �gray lines�. For inter-
mediate time scales 10
I��T�200
I�, the Fano factor of the
nonrenewal model, Fn�T�, becomes strikingly smaller than
that of the renewal model, Fr�T�, and exhibits a minimum at
T�200
I�. Fn�T� increases for T�200
I�, due to slow fluc-
tuations leading to positive ISI correlations �12,14�, while
Fr�T� saturates to its theoretical limit of CV2.

As expected, changes in Q almost do not influence the
spike-count variability in the renewal model, but do have a
strong impact on the variability in the nonrenewal model.
With higher values of Q, corresponding to more coherent
oscillations �Figs. 3�a� and 3�b�, Q=20�, serial correlations
extend up to hundreds of ISIs, the minimum in the Fano
factor of the nonrenewal model is deep, and the reduction in
the spike-count variability relative to the renewal model can
reach up to one order of magnitude, on time scales between

10 and 1000
I�. A decreased coherence of oscillations, re-
flected in lower Q values, results in brief ISI correlations, a
shallower minimum in the Fano factor of the nonrenewal
model, and a smaller reduction in variability relative to the
renewal model �Figs. 3�c� and 3�d�, Q=4�. The suppression
of the spike-count variability due to oscillations translates to
the enhancement of the discriminability, which is character-
ized by the discriminability ratio R�T� �Eq. �5�� shown in
Fig. 3�e�. The maximal value of R�T� decreases with decreas-
ing oscillation coherence.

Figure 4 summarizes the dependence of discriminability
on the oscillation to firing frequency ratio fe / fa and the qual-
ity factor Q. If fe is low �small fe / fa�, then several ISIs occur
during one oscillation cycle, which results in positive ISI
correlations on the time scale of the oscillation period �Fig.
4�d��. For low Q values, these positive ISI correlations in-
crease the variability in the nonrenewal model and lead to
low discriminability and values of the slope ratio R less than
1. A Fano factor curve in this small-ratio low-Q regime is
shown in Fig. 4�c� for fe / fa=0.1 and Q=1. For higher Q
values, in addition to positive ISI correlations on shorter time
scale, negative ISI correlations appear on the time scale of
the coherence time of oscillations �Figs. 4�e� and 4�f�,
fe / fa=0.1, Q=10�. The variability in the nonrenewal model
is reduced by these negative correlations and discriminability
increases. If the oscillation is fast �large fe / fa�, then several
oscillation cycles occur during one ISI. The effect of the
closed cycles on firing averages out through integration,
hence all correlations are driven by the fraction of the re-
maining unclosed cycle. For fast oscillations, this is a brief
time window that makes an ISI shorter or longer. Therefore
the net modulation of each ISI is small and variability is
almost unperturbed by oscillations: Fano factor curves in the
nonrenewal and renewal models overlap largely, except for
effects due to slow noise 	 �Fig. 4�g�, fe / fa=1.6, Q=80�.
However, since SCCs measure serial dependencies irrelative
to the absolute ISI modulation, this almost negligible change
in the variability is concurrent with strong extended negative
ISI correlations �Fig. 4�h�, cf. Figs. 3�a� and 3�b��. Though,
the discriminability is high in this large-ratio regime �Fig.
4�a��, a spike jitter would destroy all ISI correlations, in-
crease CV and, hence, reduce the discriminability in both
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FIG. 3. �Color online� �a�,�c�: analytical Fano factor curves for renewal �dotted blue lines� and nonrenewal �solid red lines� models. For
both models, the results of numerical simulations are shown as gray solid lines. �b�,�d�: numerically calculated SCCs �k. The parameters are

=2, A2=0.2; �a�,�b�: fe / fa=0.4, Q=20.0, �c=375, �	=0.5�10−4; �c�,�d�: fe / fa=0.5, Q=4.0, �c=900, �	=1.5�10−4. �e�: ratio of
discriminability slopes in the nonrenewal and renewal models for parameter sets as in panels �a� and �c� �red and blue lines, respectively�,
and for fe / fa=0.47, Q=10.0, �=600, �	=10−4 �green line�.
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renewal and nonrenewal models. In contrast, ISI correlations
in the near-0.5-ratio regime are robust to ISI jitters and the
discriminability in the nonrenewal model is high even for
large CV values.

We now show that analytical predictions of Fig. 4 can be
used to explain the possible role of coherent epithelial oscil-
lations in a particular sensory system, a paddlefish electrore-
ceptor �PER�. A PER can be represented as two unidirection-
ally coupled oscillators: the lumped epithelial oscillator
driving the afferent oscillator �9,10�. Epithelial oscillation
�EO� has a fundamental frequency fe�26 Hz, which is in-
variant under weak electric-field stimulations. Coherence of
stochastic EO is reflected in high values of the experimen-
tally measured quality factor Q in the range 10–20. Coherent
EO can be represented by a narrow-band stochastic process
�9�. The afferent neuron fires quasiperiodically at a mean rate
fa in the range 30–70 Hz �9�. Variability of afferent firing is
mainly due to the input from EO �9�. At the same time, the
EO induces long-lasting serial correlations of afferent ISIs
�10�.

The parameters of the nonrenewal model, Eq. �4�, can be
tuned to reproduce statistical characteristics of spontaneous
dynamics of PERs including power spectrum, serial correla-
tions, and Fano factor. As in analytical calculations, we con-
trast the signal detection by a PER driven by either coherent
EO or by epithelial fluctuations with destroyed coherence,
keeping ISIs distributions identical. Experimental abolition
of EO is difficult to achieve without significant damage to
the PER �9�. Instead, we mimicked the influence of a stimu-
lus by insertion of spikes in a spontaneous spike train, re-
corded from a PER afferent, and in a surrogate renewal spike
train obtained from the original by random shuffling of ISIs
as in Ref. �4�. The first-order ISI statistics such as ISI density
and coefficient of variation CV are identical for both spike
trains. However, the shuffled spike train lacks any ISI corre-
lations. The data were from a previous study on biperiodic
oscillations in PERs �9�. Stationary segments of 120–1200 s

of spontaneous activity recorded from 56 afferents from 19
paddlefish were used.

Figure 5�a� shows the Fano factor for a representative
afferent firing spontaneously �solid line� and for the corre-
sponding renewal surrogate �dotted line�. As predicted by the
analytic theory �cf. Fig. 3�a��, the Fano factor of the original
spike train, Fn�T�, is significantly smaller than that of the
renewal surrogate, Fr�T�, for 10
I��T�1000
I�, indicating
suppressed variability in the original spike train.

We “stimulated” an afferent by inserting N spikes in ran-
dom positions not already occupied by spontaneous spikes in
nonoverlapping 1 s windows. This procedure increases the
firing rate by N Hz, so that �=N
I�. Both the original spike
train and the renewal surrogate yield a linear dependence of
the discriminability d� on � described by Eq. �3� �data not
shown�. The slope of the discriminability at T=1 s was 2.1-
fold steeper for the original than for renewal data: thus, there
was twice better detection by the original spike train than by
its renewal counterpart. The ratios of discriminability slopes
R�T� are shown in Fig. 5�c� for three different afferents and
are in excellent agreement with analytical predictions �cf.
Fig. 3�e��.

Figures 5�d� and 5�e� summarize results for the sample of
56 PER afferents. The mean firing rate in this population was
54.43�9.54 Hz, with CV=0.19�0.05. The epithelial-to-
afferent frequency ratio fe / fa=0.49�0.07. The value of the
Fano factor was 0.031�0.01 at T=150 ms and
0.010�0.005 at T=1 s. The population average of the dis-
criminability ratio R was 1.34�0.13 at T=150 ms and
1.99�0.35 at T=1 s indicating that discriminability was al-
ways better for a nonrenewal spike train. No significant de-
pendence of R on CV or the frequency ratio was observed.
These population results can be mapped to the parameter
space of the model �Fig. 4�. For the range of frequency ratios
near 0.5, epithelial oscillations induce extended serial ISI
anticorrelations and enhance the discriminability for realistic
values of CV. This near-0.5-ratio high-Q regime corresponds
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nonrenewal and renewal models
�b� at T=50
I�: dependence on
the frequency ratio fe / fa and on
the quality factor Q of the driving
oscillations. �c�–�h�: SCCs and
Fano factor curves for the re-
newal �dotted blue lines� and
nonrenewal model �solid red
lines�. The parameters are
�c�,�d�: fe / fa=0.1, Q=1; �e�,�f�:
fe / fa=0.1, Q=10; �g�,�h�:
fe / fa=1.6, Q=80. Other param-
eters are as in Fig. 3�a�.
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to parameter values found in our PER database. The exact
value of the frequency ratio is not crucial to achieve high
discriminability in this regime. Hence PERs operate in a re-
gime where reliable signal detection is possible without fine
parameter tuning. Our analytical calculations agreed quanti-
tatively with experimental data from PER revealing that co-
herent stochastic oscillations can enhance the discrimination
performance of sensory neurons.

IV. CONCLUSION

We have studied the effect of stochastic oscillations acting
as a source of external noise on discrimination of weak sig-
nals by periodically spiking neurons. Coherent stochastic os-
cillations lead to serial correlations extending to several doz-
ens of interspike intervals, with the structure determined by
the ratio of the frequency of driving stochastic oscillations
�fe� and the neuron mean firing rate �fa� and by the quality
factor �Q� of driving oscillations. This mechanism for gen-
eration of serial correlations is distinct from the one de-
scribed for electroreceptors of weakly electric fish �4�, where
negative ISI correlations appear presumably due to a nega-
tive feedback from adaptation ionic currents or modulation
of firing threshold �7,8� and do not extend beyond few inter-
spike intervals. We demonstrate that spike-count variability
induced by these oscillations can be suppressed relative to a
corresponding renewal model, if the frequency of driving
oscillations is smaller than the mean firing rate and their

coherence is large enough. Suppressed spike-count variabil-
ity translates to an enhanced discrimination capacity of the
neuron characterized in this study by the discriminability
measure d�. Our analytical calculations yield parameter
range where discriminability is enhanced by coherent sto-
chastic oscillations.

We applied these analytical predictions to study the role
of epithelial oscillations in peripheral electroreceptors of
paddlefish. The population averages of the ratio of epithelial
to sensory neuron frequencies and of the quality factor of
epithelial oscillations are nicely mapped on the analytically
derived parameter range of discriminability enhancement.
This gives a strong argument in favor that epithelial oscilla-
tions serve to enhance discriminability of weak signals.

In conclusion, our analytical calculations underscore that
coherent oscillations can improve discrimination capacity of
spiking neurons in a feed-forward scenario. Such mechanism
may be relevant to a broad range of phenomena involving
unidirectionally coupled oscillators, e.g., to spiking neurons
receiving feed-forward oscillatory input from a network of
CNS neurons or possibly to low-frequency sensors of elec-
tric and magnetic fields �22,23�.
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